Steam Turbine Seminar -17
Lund University
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 2
Something on hydraulics…
N.B. This is an old setup with 1 of 2 – the state-
of-the-art is 2 out of 3 trip redundancy (both the
protection system and the hydraulics)
The safety system works like a three-way
valve
The trip system will simply de-pressurize the
hydraulics system
Most “direct” trips such as speed and
condenser pressure have been replaced by
2/3 measuring devices (and trips)
The 2/3 philosophy makes it possible to
“test” the trip all the way to the hydraulics
ESV movability test
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 3
Trip logic – non exhaustive principle
Lube oil pres
≥2
≥2
≥2
≥2
Vibrations
≥2
≥2
≥2
≥2
≥2
N.N.
≥1
High exh temp
≥1
≥1
2oo3
1oo2
≥1
≥1
≥1
High brg temp
PLC
Bus
≥1
≥1
≥1
N.N.
Speed < max
Speed < max
Trip block 2oo3
Hard-wired
Speed < max
P
cond
< max
P
cond
<max
P
cond
< max
Ch.1
Ch.2
Ch.3
≥1
≥1
≥1
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 4
Trip block – two out of three logic
Manual
trip valve
Pressure
switch
PI
ESV
Hydraulic
supply unit
Channel A Channel B Channel C
) (
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 5
Trip block – test
Pressure
switch
PI
ESV
Manual
trip valve
Hydraulic
supply unit
Tripped channel
) (
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 6
Trip block – trip
Pressure
switch
PI
ESV
Manual
trip valve
Hydraulic
supply unit
Tripped channel
Tripped channel
No pressure!
) (
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 7
The ”Duck-Curve”…
4.3 GW/h
California
Sweden
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 8
Flexibility
Start
Steady state
Active generation
control
Spinning reserve
off-peak
turndown
SS
Shutdown
Load
LF
Load
Courtesy of Siemens
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 9
Start-up transient stress
Courtesy of John Gülen, Gas Turbine Combined Cycle Fast Start: The Physics Behind the Concept
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 10
Turbine pressures vs. flow (load)


CondSteamSteam
outCW,inCW,CWp,CW
hhmQ
TTcmQ
LMTDAUQ
SteamSteam
mh
SteamCondCond
mmh
CWp,CW
c,m
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalisedpressure[‐]
Normalisedflow[‐]
Linear CV
Extr#5 Extr#4
Extr#3 Extr#2
Extr#1 Cond
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 11
0
2
4
6
8
10
12
14
16
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Condenserpressure
Linear
Extraction#1pressure
Pressureratio
Condenser pressure vs. flow (load)
Relative flow [-]
Relative pressure [-]
Section pressure ratio[-]
Turbine load


CondSteamSteam
outCW,inCW,CWp,CW
hhmQ
TTcmQ
LMTDAUQ
SteamSteam
mh
SteamCondCond
mmh
CWp,CW
c,m
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 12
The proof…
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 13
Grid codes
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 14
Grid stability

12
·
·

1 2
· 2··
·




The inertia constant:
The inertia constant is typically within the range of 5 and 10 seconds:
Nominal power = 500 MW
5 s. 2500 MJ
10 s. 5000 MJ
5000
48
·
1
0.4
260
Energy required during a start @ 5000 MJ, as 48 MJ/kg natural gas:
This is equivalent of some 280000 cups of tea!
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 15
Grid stability
1 2
10
9876543
Grid demand (4500 MW)
10 units á 500 MW running at 90 % load – 4500 MW


∆

·

·
0.00
10.00
20.00
30.00
40.00
50.00
60.00
0 20406080100120
Frequency
Time
Speed/frequency vs. time @tau=10 s.


@
∆
2·
·

·

Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 16
Grid stability


@
∆
2·
·

·



∆
100
·

·






·

·
1
2··
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 17
Increased flexibility – starting
Stress controller
State-of-the
Blankets
Since the 80s – mature if OEM involved
Hot air
High initial cost
Very effective
High-speed barring
Risky…
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 18
Heating blankets
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 19
Hot-air ST warming
Hot air
Used by Karlshamnsverket (KKAB) since 1980s
Large 340MW HP-IP-LP Alstom (BBC) utility turbines
Flanges for blower/heater
Open vacuum breaker
About 15 minutes for hogging/vacuum pull
No corrosion risk since RH<<60 percent
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 20
Background
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 21
High-speed barring
Both ventilation and disk friction feed energy into the
trapped steam.
Scales with speed cubed and density
Normal barring speed is approx. 200 rpm
Potential risk of uneven temperature
More work with longer blades and stage diameter
LSB spray cooling
Pipe and valve from HP-extraction to condenser
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 22
Shaft glands
Courtesy to Siemens
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 23
Gland system – Increased pressure
No or low load
FAN
Low P. Low P.
Spray
Sep.
1.1...1.3 bar(a)
0.98 bar(a)
Controlling
Closed
The mass flow of seal steam
into the turbine(s) follow a
Fanno line
Steaming seals should be
avoided
Steam into the HPT through
seal off-load pipe(s)
Steam supply must be
available
No hard-ware modifications
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 24
Increased flexibility – in operation
Capacity bypass
Loss one in use
Extra arc
Small loss when not used
Top-heater shut-down
Thrust force
Condensate pump shut-down – sliding pressure mode
Caveat! Drum- and hot well levels
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 25
Enhanced flexibility
HP
LP
G
FWT/DEAE
Capacity by-pass
HP-FV by-pass
HP-FWH bypass
Capacity bypass
Top-heater for
constant FW-temp
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 26
Rotor stress – temperature gradients
T
r
T
Center
T
Average
T
Steam
T
Surface
ΔT



y
ii
r
r
r
r
2
i
2
y
2
i
2
2
r
drrTdrrT
rr
rr
rμ1
Eα
rσ



y
ii
r
r
r
r
2
2
i
2
y
2
i
2
2
θ
TrdrrTdrrT
rr
rr
rμ1
Eα
rσ
  

rim
r
0
r
0
22
rim
r
r
r
1
3
ΔTEα
drrT
r
1
drrT
r
1
Eαrσ
rim
  

rim
r
0
r
0
22
rim
θ
r
r
21
3
ΔTEα
TdrrT
r
1
drrT
r
1
Eαrσ
rim
Temperature induced stresses (radial and hoop):
Simplified equations for a case without a bore:
α = 1.8∙10
5
°C
-1
E = 6.9∙10
4
MPa
ΔT = 55 °C
σ
@r=0
= 46 MPa
Example
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 27
Rotor stress – temperature gradients
Control mode ΔT first stage ΔT exhaust
Partial arc 94°C 61°C
Throttle 46°C 28°C
Sliding 3°C 18°C
The HPT-example shows a load change
from full to 1/3 load
IPT swallowing capacity and re-heater
temperature controls the HPT back-
pressure
3°C
46°C
94°C
18°C
28°C
61°C
Enthalpy
Entropy
3
1
36.8
12.3
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 28
Fatigue – low or high?
Life cycles, [n]
Stress amplitude, [σ
a
]
Low-cycle fatigue High-cycle fatigue
Fatigue limit
σ
σ
a
σ
a
Time
Stress
Failure
No failure – no crack initiation
10
5…7
Wöhler- or σ,N curve
Based on Tanuma & Tadashi, Advances in Steam Turbines for Modern Power Plants
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 29
Casing wall temperature probe
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 30
Avancerad turbinregulator
T
r
T
Center
T
Average
T
Steam
T
Surface
ΔT
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 31
Aged deterioration – failures
MaterialPerformance
Creep
Embrittlement
Fatigue
Environment
assisted crack
Thermal
fatigue
Low-cycle
fatigue
Fretting
Dynamic SCC*
Static SCC*
Corrosion
fatigue
Crack
Crack
Crack
Crack
Crack
Crack
Crack
Brittle fracture
Softening
Creep
Wear/rubbing
Erosion/FAC
Scale deposition
Type of deterioration
Mode of deterioration
Damage or incidence
Loosening
Deformation
Efficiency decrease
Efficiency decrease
Efficiency decrease,
stick, rubbing
HP/IP shroud, blade groove, HP/IP casing,
main pipes, main valves
HP/IP rotor
HP/IP heat groove, bottom of blade root
groove
LP last blades groove of LP rotor, HP/IP
casings
HP/IP blade groove of rotor
Blade groove of LP rotor
Blade groove of LP rotor
Blade root and groove, shroud and profile
Casing bolts (high temperature)
HP/IP diaphragm nozzle plate (impulse),
HP/IP rotor and inner casings (leak)
Seals, bearings, valve shafts
Control stage nozzle and LP last stages
HP/IP nozzles and blades, main valves
Typical damaged portion
*Stress corrosion cracking
Based on Tanuma & Tadashi, Advances in Steam Turbines for Modern Power Plants
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 32
Environment assisted crack
Corrosive environment
Materials
Stress
Environment
•SCC
Dynamic SCC
Corrosion fatigue
Static stress
Repetitive stress
Vibration stress
Strength – high is more
suspicious for SCC
Impurities etc.
Temperature
Wetness*
Dissolved oxygen
Impurities in steam
Start-up and shutdown
*Wilson zone
Based on Tanuma & Tadashi, “Advances in Steam Turbines for Modern Power Plants”
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 33
Turbine damage – erosion
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 34
Solid particle erosion (SPE)
Ken Cotton, ”Evaluating and Improving Steam Turbine Performance”, 2
nd
ed.
N.B. This is a very design
specific problem!!!
Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-25 Page 35
Turbine damage – rubbing